
Sierpiński, Recursion and
Efficiency, Mutual Recursion

Checkout Recursion2 project from SVN

 Any method that calls itself
◦ On a simpler problem

◦ So that it makes progress toward completion

 When implementing a recursive definition

 When implementing methods on recursive
data structures

 Where parts of the whole look like smaller
versions of the whole

Q1

 The pros
◦ easy to implement,

◦ easy to understand code,

◦ easy to prove code correct

 The cons
◦ takes more space than equivalent iteration

◦ Why?

 because of function calls

Q2

 Always have a base case that doesn’t recurse

 Make sure recursive case always makes
progress, by solving a smaller problem

 You gotta believe
◦ Trust in the recursive solution

◦ Just consider one step at a time

 Factorial:

 Ackermann function:

Base Case

Recursive step

HW 12 & 13: Sierpinski Triangle

If you actually do this, what really
happens is Douglas Hofstadter
appears and talks to you for eight
hours about strange loops.

 Why does recursive Fibonacci take so long?!?

 Can we fix it?

Q3-Q4

 Save every solution we find to sub-problems

 Before recursively computing a solution:
◦ Look it up

◦ If found, use it

◦ Otherwise do the recursive computation

 A deep discovery of computer science

 In a wide variety of problems we can tune the
solution by varying the amount of storage
space used and the amount of computation
performed

 Studied by “Complexity Theorists”

 Used everyday by software engineers

Q5

 2 or more methods call each other repeatedly
◦ E.g., Hofstadter Female and Male Sequences

◦ Burning Questions for you to figure out now by
coding:

 How often are the sequences different in the first 50
positions? first 500? first 5,000? first 5,000,000?

Q6

HW 13: Sierpinski Carpet

Q7-
8

